Multiscale Quantum Gradual Approximation Algorithm: An Optimization Algorithm With a Step-by-Step Approximation Strategy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Algorithm for L∞ Approximation by Step Functions

We give an algorithm for determining an optimal step function approximation of weighted data, where the error is measured with respect to the L∞ norm. The algorithm takes Θ(n+ log n · b(1 + log n/b)) time and Θ(n) space, where b is the number of steps. Thus the time is Θ(n log n) in the worst case and Θ(n) when b = O(n/ log n log log n). A minor change determines the optimal reduced isotonic re...

متن کامل

An Algorithm for $L_\infty$ Approximation by Step Functions

We give an algorithm for determining an optimal step function approximation of weighted data, where the error is measured with respect to the L∞ norm. The algorithm takes Θ(n+ log n · b(1 + log n/b)) time and Θ(n) space, where b is the number of steps. Thus the time is Θ(n log n) in the worst case and Θ(n) when b = O(n/ log n log log n). A minor change determines the optimal reduced isotonic re...

متن کامل

Adaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm

 A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...

متن کامل

A stochastic approximation algorithm with multiplicative step size adaptation

An algorithm of searching a zero of an unknown function φ : R → R is considered, xt = xt−1−γt−1yt, t = 1, 2, . . ., where yt = φ(xt−1)+ξt is the value of φmeasured at xt−1 with some error, ξt is this error. The step sizes γt > 0 are random positive values and are calculated according to the rule: γt = min{u γt−1, ḡ} if yt−1yt > 0, and γt = d γt−1, otherwise. Here 0 < d < 1 < u, ḡ > 0. The funct...

متن کامل

A stochastic approximation algorithm with multiplicative step size modification

An algorithm of searching a zero of an unknown function φ : R → R is considered: xt = xt−1 − γt−1yt, t = 1, 2, . . ., where yt = φ(xt−1) + ξt is the value of φ measured at xt−1 and ξt is the measurement error. The step sizes γt > 0 are modified in the course of the algorithm according to the rule: γt = min{u γt−1, ḡ} if yt−1yt > 0, and γt = d γt−1, otherwise, where 0 < d < 1 < u, ḡ > 0. That is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2986243